Community Math Nights Engaging Families for Math Success in Elementary School

Promising Math 2019 November 15, 2019

Meet your presenters

Kerry Friedman

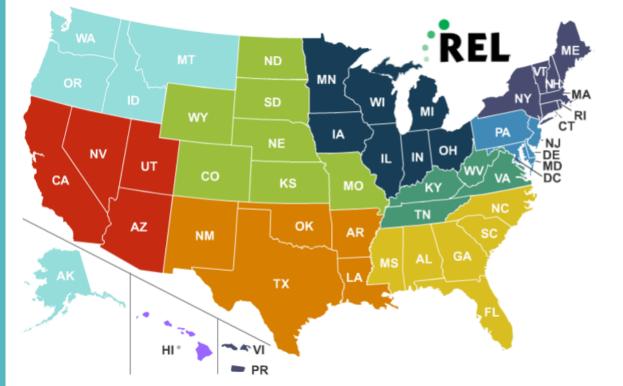
Deputy director and senior education researcher

REL Appalachia @ SRI International

Michelle Smith

First grade teacher

Harts PreK-8; *Harts, West Virginia*


Kimberly Cooper

Assistant principal

Harts PreK-8; *Harts, West Virginia*

The Regional Educational Laboratories

* The Pacific Region contains Hawaii pictured on the map and American Samoa, the Commonwealth of the Northern Mariana Islands, the Federated States of Micronesia (Chuuk, Kosrae, Pohnpei, & Yap), Guam, the Republic of the Marshall Islands, & the Republic of Palau not pictured on the map

The 10 Regional Educational Laboratories (RELs) work in partnership with stakeholders to conduct applied research and trainings.

The REL mission is to support a more evidence-based education system.

Administered by the U.S. Department of Education, Institute of Education Sciences (IES)

Applied Research

What	June 2016
	Dual enrollment courses In Kentucky: High school students' participation and completion rates
	Chad R. Lochmiller Thomas J. Sugimoto Patricia A. Muller Gina G. Mosier Steven E. Williamson Indiana University
	Key findings Approximately one in five Kentucky students in grades 11 and 12 participated in dual enrollment courses between 2009/10 and 2012/13. Participation rates were higher for female students, White students, students not eligible for the school lunch program, and students attending high school in Appalachian counties and rural areas. Students completed 83–86 percent of dual enrollment courses attempted each year between 2009/10 and 2012/13. Completion rates were lower in courses that were attempted by Black students, students eligible for the school lunch program, and students

Training, Coaching, and Technical Support

Dissemination

Children who believe they are more willing to put in effort, even who hely stronges, and this results in effort, even who hely stronges, and this results in better performance.¹

The number of STEM (science, technology, engineering, and mathematics) jobs is growing and haif of all STEM jobs are available to workers without a four-year college degree. STEM jobs pay 10% more than other jobs available to these workers."

Families can support children in developing math skills for the future by^v:

 Archever, Inc. (2004) Closing the spectrations japp. An envirad St propriet project in the adjunct of high school (concern with the environment) of the state of the school (concern with the environment). J (2013) The Hoden STEM Economy Brookings Instit Washington, OC.
Rosteiner, LL. (2001) School, family, and community partnership ed J. Boulder, CO. Weshinev Press.

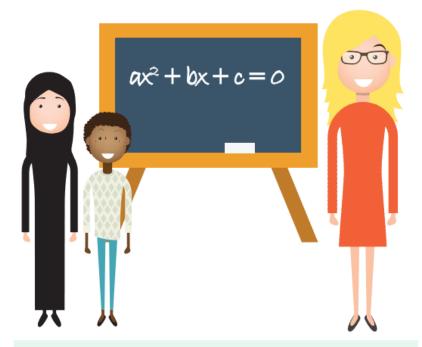
his document was prepared under Contract No. ED. IES-17:0: 000k by Regional Educational Laboratory Appalachia, administered by SRI International. The orient does not necessarily reflect the views or policies OLIS or the U.S. Department of Education, nor does mention of trade names, commercial products, expandations imply endocrsement by the U.S. Government.

Community Math Nights

Children who believe they can be successful in math are more willing to put in effort, even when they struggle, and this results in better performance.ⁱ

Success in elementary school math predicts future achievement in middle and high school math and other subjects.^{ii, iii} Students who complete higher level math in high school earn higher incomes in the future.^{iv}

The number of STEM (science, technology, engineering, and mathematics) jobs is growing and half of all STEM jobs are available to workers without a four-year college degree. STEM jobs pay 10% more than other jobs available to these workers.^v

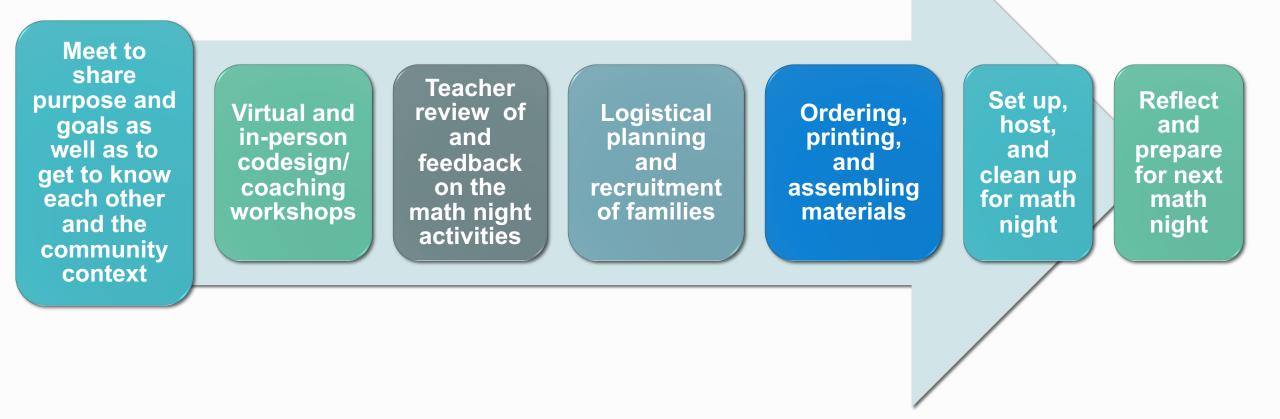


Let's try a different method.

praising effort and modeling positive math attitudes.

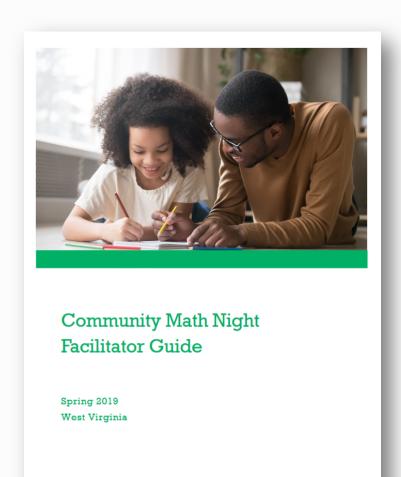
encouraging children to seek help and try new strategies when they are stuck.

confronting stereotypes about who is good at math.


Community Math Nights project

- Community Math Nights were designed to engage family members in supporting their child's math learning and helping their child develop a growth mindset as it relates to math ability.
- REL AP staff codeveloped math night activities with and provided coaching and support to educators in Harts and Omar, West Virginia. Educators facilitated the first math nights at their schools in April 2019 and their second just this week.

What was the process for developing and hosting the Community Math Night?



Facilitator guide

The facilitator guide includes all **background information**, **activity instructions**, **facilitator notes**, and **materials/handouts** for our Community Math Night.

Contents

- Overview
- Math night at a glance
- Background and facilitator notes on math night activities
- Table handouts
- Parent handouts
- Table materials

Check out the guide! <u>https://ies.ed.gov/ncee/edlabs/regions/appalac</u> <u>hia/events/event_4-10-19_math-nights.asp</u>

Table 1b: Grades 2–3: Diamond Challenge

Students and families use pattern blocks to play

a game in which they practice building and

area, volume, and geometry in later grades.

Facilitator(s):

Purpose

Materials

- Instructions and parent prompts
- Diamond game board
- analyzing 2-D shapes to develop foundations for . Opaque bag with pattern blocks

Facilitator Notes

- In the game, players use four different types of pattern blocks to fill in a rhombus-shaped board game. The game will engage players of different ages and allow students to develop and demonstrate strategies along with their parents.
- The game can be played by one to four people, but it's best played in pairs.
- Show parents how they can use the prompts, model asking questions (e.g., Are there shapes you can't use? Why?) and point out the geometry glossary poster.
- Model using the correct vocabulary for shapes, but do not correct families if they use color names instead.

West Virginia Standards

Second grade:

M.2.25 Partition circles and rectangles into two, three, or four equal shares, describe the shares using the words halves, thirds, half of, a third of, etc.; describe the whole as two halves, three thirds, four fourths. Recognize that equal shares of identical wholes need not have the same shape.

Third grade:

Cluster Reason with shapes and their attributes.

- M.3.24 Understand that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), that the shared attributes can define a larger category (e.g., quadrilaterals). Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories.
- M.3.25 Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole. For example, partition a shape into 4 parts with equal area, and describe the area of each part as ¼ or the area of the shape.

Table 4a: Grades K-1: No-Bake Playdough

Facilitator(s):

Purpose

Students and families will compare and use different measuring tools as they put together ingredients to make playdough.

Materials

- Multiple measuring cup and tablespoon sizes
- Ingredients for playdough

Facilitator Notes

 Support parents as they go through the activity, particularly when they order the tools they will use for measuring (spoons and cups) by size.

 Show parents how they can use the prompts and model asking questions, such as "How do you know that the tablespoon is bigger than the half tablespoon?" (e.g., because I see the half spoon looks smaller, or because I can

because I see the half spoon looks smaller, or because I can use two half tablespoons to fill up one tablespoon).

3. This recipe may not work exactly as intended, as it depends on the ingredients. If the playdough doesn't come out just right, help them by measuring small quantities of oil and water (don't just add splashes of the wet ingredients). That way, the families can suggest changes to the recipe for the next person.

West Virginia Standards

Kindergarten

M.K.15 Directly compare two objects with a measurable attribute in common to see which object has "more of" or "less of" the attribute and describe the difference.

First grade

- Cluster Measure lengths indirectly and by iterating length units.
- M.1.15 Order three objects by length and compare the lengths of two objects indirectly by using a third object.
- M.1.16 Express the length of an object as a whole number of length units, by laying multiple copies of a shorter object (the length unit) end to end; understand that the length measurement of an object is the number of same-size length units that span it with no gaps or overlaps. Instructional Note: Limit to contexts where the object being measured is spanned by a whole number of length units with no gaps or overlaps.

Second grade

Cluster Measure and estimate lengths in standard units.

M.2.17 Measure to determine how much longer one object is than another, expressing the length difference in terms of a standard length unit.

Community Math Night content and reactions

What did the first Community Math Night include?

• Dinner

- Introductory presentation from a teacher on the importance of math, positive math attitudes, and growth mindset
- Standards-aligned, hands-on mathematics activities in four core areas:
 - Geometry
 - Operations and algebraic thinking
 - Numbers and operations in base 10
 - Measurement and data

Where's the 1?

Restriction: The #1 key is broken!

Goal: We need to make the number 1,111 show up on the calculator screen.

- 1. Explain your strategy.
- 2. How many moves did it take you?
- 3. Can you do it in fewer moves? More?
- 4. Is there a different operation you can use?

Family reactions

What did you like most?

"Just made it more obvious as to how much MATH is involved in our lives"

"Spending more time with my son and watching him learn with his friends" "Fun"

What would you improve?

"Have them more often"

"Have events like this more often" "More time"

Survey results

Overall, how would you rate the Community Math Night?

- 75 percent rated Excellent
- 25 percent rated Very Good

96 percent agreed:

- I increased my understanding of the importance of math for my child's success in school.
- I learned new strategies to support my child's math education.
- I thought the math activities were fun for my child.
- I can use some of what I learned at home.

Lessons learned

Lessons learned

- Get people to the Community Math Night
 - Provide dinner
 - Consider providing transportation
 - When scheduling, consider other student activities and community events and release time of siblings

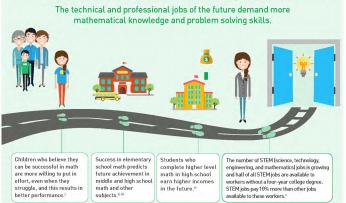
- Consider local context
 - Existing attitudes and preconceptions
 - Reading levels of community members

Lessons learned

- Get family members actively engaged
 - Provide parent/family member prompts
 - Encourage participation of the whole family

	J

- Preview activities in class
 - Especially for younger students, try some of the activities in class beforehand so they can show their families what they know



Questions?

Supporting Your Child in Developing Math Skills For Future Success

Math success opens doors to college and careers.

Families can support children in developing math skills for the future by^{iv}:

encouraging children to seek help and contronting stereotypes a try new strategies when they are stuck. who is good at math.

Black J. (2019) Mathematical mindets. Unleasting dudentic potentia htrugh creating mail, inpring massages and innovable techning. San Principal Control Length, Inpring massages and innovable techning. San Principal Control Length, III, 2019 How important is when you start? Early mathematicals housided and later school access. Traches Colleg Early mathematicals housided and later school access. Traches Colleg Early mathematicals housided and later school access. Traches Colleg Early mathematicals achievement: Near Diff. Early predictions of High chool mathematicals achievement: Psychological Courses 2370.

iv Active, Inc. (2014). Closing the expectations gap, An annual 50-ada progress in process in process that have a set of the ingeneric and the end of the set of the

This document was prepared under Contract No. ED-IES-172-01004 by Regional Educational Laboratory Appalachia, administered by SRI International. The content does not necessarily reflect the views or policies of IES or the U.S. Department of Education, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Sovernment.

Engaging Families for Math Success

SRI International

Megan Cox, Community Math Nights Project Co-Lead Kerry Friedman, Community Math Nights Project Co-Lead

How many ways are there to count these blocks? How can you group the blocks to count them faster? Asking children simple questions about the world around them can reinforce math skills and help them apply their math knowledge in new ways. Young children who have lots of opportunities to develop and apply their mathematical knowledge are more likely to achieve in school and in life. ¹ Helping families understand the importance of math and of supporting their children's math learning outside the classroom is one way to set children up for success.

Supporting family math

Well-designed partnerships of families and community members can increase students' self-confidence and achievement, generally, and in mathematics specifically. ^{2, 3} Community engagement activities, such as math nights, create an opportunity for educators, children, and families to learn and talk about math and can help family members participate in their child's learning and support their academic success. ⁴

As natural teachers and role models for students, families can also encourage positive attitudes towards learning. Yet some family members may need support around their own math attitudes. Most of us have heard the phrase, "When will I ever use math?" or "I was never good at math." Sometimes these attitudes toward math can affect children's math success. $\frac{5}{2}$

Teachers and school staff can support parents in developing positive math attitudes by introducing growth mindset thinking and strategies for building math confidence and persistence. A growth mindset means that you believe that your intellectual abilities can be increased with effort and hard work. ⁶ This promotes engaging in productive struggle and trying new methods. Community engagement activities and school-family math supports can reinforce the importance of growth mindset and persistence in math to children and their families alike.

Community Math Nights Toolkit

(forthcoming)

Thank you!

REL Appalachia

This presentation was prepared under Contract No. ED-IES-17-C-0004 by Regional Educational Laboratory Appalachia, administered by SRI International. The content does not necessarily reflect the views or policies of IES or the U.S. Department of Education, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.